Optical waveguides in oxygen-implanted buried-oxide silicon-on-insulator structures

B.N. Kurdi and D.G. Hall

High Speed Circuits & Systems Laboratory

Joungwook Moon

2011, 3,16

Contents

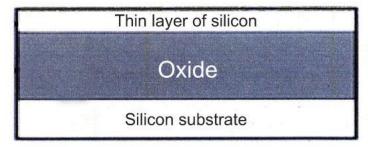
- Abstract
- Current Interest
- SOI technology
- Analysis of the SOI structure
- Conclusion

Abstract

- Analysis the waveguiding properties of oxygen-implanted, buried-oxide, silicon-oninsulator structures
- Can support TE_0 guided-wave propagation, at sub-bandgap wavelengths ($\lambda = 1.3$ um), with losses 1dB/cm

Current Interest (1)

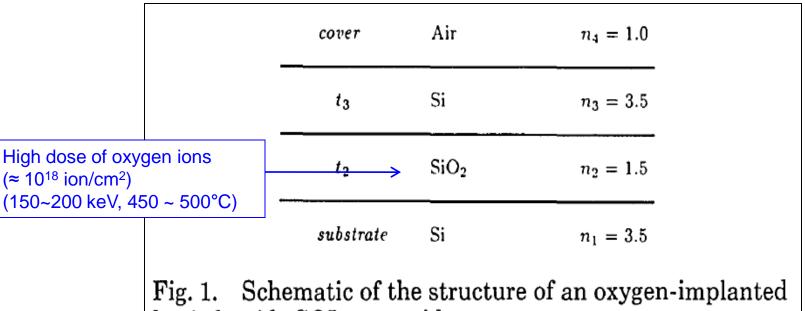
- Important motivation :
 - Compatibility with silicon-based integrated circuits
- Silicon-based optical system
 - Waveguide demultiplexer
 - Spectrum analyzsers
 - Others


Current Interest (2)

- Optical waveguide in crystalline silicon
 - Graded-index waveguides
 - Performance of Epitaxial-silicon optical waveguides at $\lambda = 1.3$ nm (Soref and Lorenzo)
 - Epitaxial waveguides
 - Antiresonant reflecting optical waveguides
 - Low loss, but expense of isolating the guided energy from crystalline-silicon substrate
 - Impurities introduced into the epitaxial silicon layer by ion implanatation (D.G. Hall)
 - unacceptably high propagation losses
 - Use of silocon itself as a waveguide at wavelength >1.1um

Silicon On Insulator technology

 Use single-crystal layer separated from a conventional silicon substrate by a thin layer of silicon dioxide



• Interest:

Electrically resistant to radiation effect
Also an ideal waveguide for use in optics
(acceptably low radiation-leakage-loss limit 1dB/cm @ λ =1.3um)

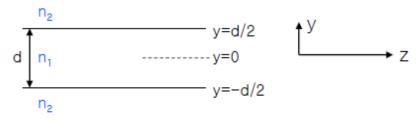
SOI technology (2)

 Use SIMOX (separation by Implanted Oxygen) process

buried-oxide SOI waveguide.

Analysis to determine SOI(1)

$$E = \hat{y}f(x)\exp[i(\beta z - \omega t)],$$



where, ŷ= unit vector,

 $\beta = 2\pi N/\lambda$ (propagation constant)

 $N = \beta/k$ (effective index)

$$k_0 = 2\pi/\lambda$$

Consider TE Solution.

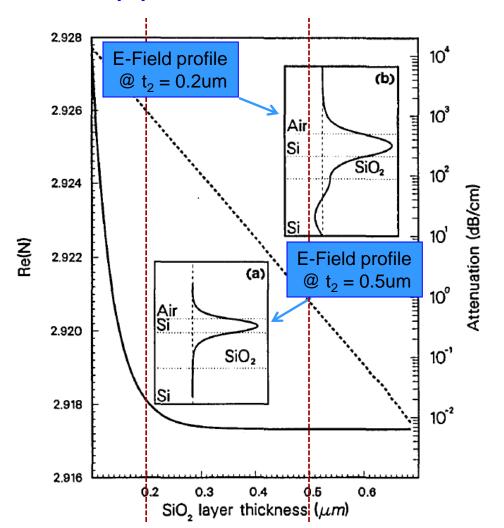
$$\overline{E}(y,z) = \overline{x} E(y) e^{-j\beta z}$$

Then,
$$\frac{d^2 E(y)}{dy^2} + (k^2(y) - \beta^2)E(y) = 0$$

$$k^{2}(y) - \beta^{2} > 0$$
 in core =>

$$E(y) \sim \sin(k_y y)$$
 or $\cos(k_y y)$

$$k_{y} = \sqrt{(n_{1}k_{0})^{2} - \beta^{2}}$$


$$k^2(y) - \beta^2 < 0$$
 in cladding =>

$$E(y) \sim \exp(\alpha y)$$
 or $\exp(-\alpha y)$ with

$$\alpha = \sqrt{\beta^2 - (n_2 k_0)^2}$$

Analysis to determine SOI(2)

Re(N) and the attenuation of the TE₀ mode for the structure

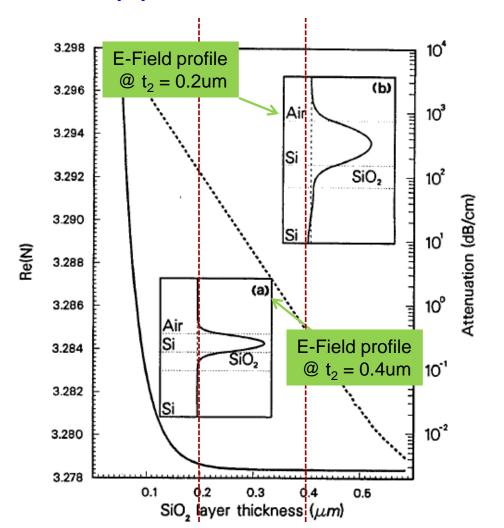

cover	Air	$n_4 = 1.0$
t ₃	Si	$n_3 = 3.5$
t_2	SiO ₂	$n_2 = 1.5$
substrate	Si	$n_1 = 3.5$

Fig. 1. Schematic of the structure of an oxygen-implanted buried-oxide SOI waveguide.

- Full range of oxide thickness
- Attenuation varies 6 orders of magnitude
- At t₂ = 0.2um, leakage into silicon substrate is stronger
- Increased oxide thickness reduces the attenuation due to radiation leakage

Analysis to determine SOI(3)

Re(N) and the attenuation of the TE₀ mode for the structure

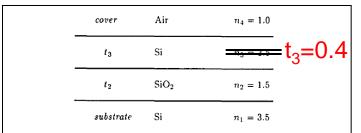


Fig. 1. Schematic of the structure of an oxygen-implanted buried-oxide SOI waveguide.

- Re(N) ≈ 3.28 for t₂ > 0.2um,
 1dB/cm attenuation
- Acceptable level of attenuation can be obtained for oxide thickness using SIMOX technology

Analysis to determine SOI(4)

- Analyzed TM mode and higher-order TE mode
 - → rather high loss for these modes
- High-mode-power attenuation associated with TM mode (TM₀ is 2 orders of higher than TE₀)
- Other loss mehanisms can be <u>minimized or</u> <u>eliminated</u> by proper <u>processing procedures</u>
- Implantation damage can be reduced or removed by annealing

Conclusion

- Leakage loss can be sufficiently low at SIMOX wavegudes
- useful for optical emission experiments & broad range of application in optics